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Mean-Field Kinetic Theory of a Classical 
Electron Gas in a Periodic Potential. 
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We study the static and dynamic behavior of a classical electron gas in the 
periodic potential created by an ionic lattice. Using the well-known Vlasov 
approximation, we derive a mean-field kinetic equation for the density-response 
function of the electrons. This equation is formally solved in terms of the trajec- 
tories of one electron in the mean-field equilibrium potential which determines 
the local electronic density. The mean-field expressions of the static and 
dynamic structure factors are then obtained through the fluctuation-dissipation 
theorem. These expressions are used to show that within the mean-field 
approximation the system is a conductor at all temperatures and for all 
dimensions. 

KEY WORDS: Classical Coulomb gas; Vlasov approximation; dynamic 
structure factor; Kosterlitz-Thouless transition. 

1. I N T R O D U C T I O N  

The classical  C o u l o m b  gas ( C G )  is made  up  of  two species of  par t ic les  with 
oppos i te  charges e and  - e .  Two charges  in teract  th rough  the C o u l o m b  
po ten t ia l  defined as the so lu t ion  of Po isson ' s  equa t ion  in d dimensions.  
This po ten t ia l  is l inear  in one d imension ,  loga r i thmic  in two dimensions ,  
and  inversely p r o p o r t i o n a l  to the d is tance  in three d imensions .  F o r  d~> 2, 
one has to in t roduce  a shor t - range  repuls ive po ten t i a l  be tween oppos i t e ly  
charged  par t ic les  in o rde r  to prevent  their  collapse.  F o r  d = 2 ,  this 
add i t iona l  po ten t ia l  is real ly  essential  to the s tabi l i ty  only  be low the 
col lapse  t empe ra tu r e  ~1) To=e2 /2kB  (the system of po in t  charges  is s table 

above  To ~1)). 
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The CG is particularly interesting in two dimensions, where it 
undergoes a Kosterlitz-Thouless (KT) transition (2) from a low-temperature 
dielectric phase to a high-temperature plasma phase3 3) The KT transition 
is characterized by a discontinuity in the response of the system to an 
external static field, as materialized by the static dielectric constant, which 
is infinite in the plasma phase and finite in the dielectric phase. This 
transition is induced by the binding nature of the logarithmic potential: at 
low temperatures, each positive charge combines with a negative charge to 
form a dipolar molecule. Kosterlitz and Thouless ~2~ have proposed a 
semiheuristic argument which shows that the dielectric (dipole) phase is 
stable below Tc = eZ/4kB, in the zero-density limit. Renormalization-group 
calculations (2'4) lead to a density-dependent transition temperature; when 
the density becomes small, this temperature goes to T c. For higher den- 
sities, the KT transition should become a first-order transition between a 
dielectric gas and a conducting liquid. (s) In one dimension, the CG is 
always (at any temperature or density) a dielectric, as shown by an exact 
explicit calculation(6); this is due to the strong binding nature of the jxl 
potential. In three dimensions, the CG is expected to be always a plasma, 
at least in the fluid phase, since the Coulomb potential then vanishes at 
large distances. 

The KT transition of the CG is characterized by a static criterion 
regarding the static-screening properties. This transition also should be 
characterized by a dynamic criterion with regard to the dc conductivity a. 
The plasma phase should be conducting (o-v a0), since it contains free 
charges, whereas the dielectric phase should be insulating (a = 0), since it 
contains only dipolar molecules. This dynamic aspect of the KT transition 
has been recently investigated through molecular dynamics (MD) 
experiments. ~7'8~ The authors ~7'8~ consider a spcial version of the CG, where 
the particles of one species (the "ions") are fixed at the sites of a periodic 
lattice while the particles of the other species (the "electrons") move in 
the periodic potential created by the fixed ions. The KT transition 
then becomes a localization transition for the mobile particles: at low 
temperatures, each electron is bound to a given ion, while above some 
threshold temperature the electrons diffuse throughout the lattice. (7'8) Since 
it is difficult to obtain accurate estimates of a from MD simulations, 
Clerouin et al. ~8) have only computed the self-diffusion constant D. As 
expected, D vanishes below some threshold temperature 2 depending on the 
density. 

2 A priori  this threshold temperature might be different from the one at which ~r vanishes. 
Furthermore, both previous temperatures might be different from the KT temperature deter- 
mined by the static criterion. In fact, intuitive physical arguments indicate that all these 
temperatures should be identical. 
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As illustrated by the MD simulations, ~v'8) the fixed-ion model in two 
dimensions exhibits remarkable dynamic properties related to the KT 
transition. Furthermore, this model in three dimensions might reasonably 
describe superionic conductorsJ 9~ The present series of papers is devoted to 
a mean-field analysis of the static and dynamic behavior of the fixed-ion 
model in d dimensions. In this analysis, the electron-electron interactions 
are treated in a mean-field approximation, while the electron-ion inter- 
actions are taken into account exactly. The latter prescription makes the 
mean-field calculations much more difficult than for the usual CG with two 
mobile species. Furthermore, and this is more essential, the exact treatment 
of the electron-ion interactions allows one to describe complicated 
coupling effects between the electron motion and the periodic structure of 
the lattice. The nontrivial character of the mean-field approach for the 
fixed-ion model led us to investigate the predictions of this theory at all 
temperatures, although the latter is expected to be only valid in the high- 
temperature regime. Our salient results have been summarized in a 
letter. ~1~ In the present paper (referred to as paper I), we formally solve the 
mean-field equations, and we study the nature of the phase predicted by 
the mean-field theory from both static and dynamic points of view. In 
papers II and II1, we shall compute explicitly the mean-field quantities for 
d = ! and d = 2, respectively. The corresponding results will be compared to 
exact (analytic) or MD data; in particular, emphasis will be put on the 
spectrum of the fluctuations and on the collective modes. 

The present paper is organized as follows. In Section 2, we define the 
fixed-ion model. In Section 3, we derive a mean-field kinetic equation for 
the density-response function of the system, where the correlations between 
the electrons are neglected (Vlasov approximation). This equation is 
formally solved in Section 4. The man-field expressions of the static and 
dynamic structure factors are then obtained through the fluctuation- 
dissipation theorem in Sections 5 and 6. The static and dynamic criteria, 
which determine the phase of the system, are applied to these mean-field 
expressions. A short summary of the main results and some comments are 
given in Section 7. 

2. T H E  F I X E D - I O N  M O D E L  

In the fixed-ion model, the positive charges e (the ions) are fixed at the 
sites R s of a periodic lattice. The negative charges - e  (the electrons) move 
in the periodic potential created by the ions. The mass of the electrons is m. 
The system is overall neutral, i.e., the number Are of electrons is equal to 
the number Ni of ions, Are-= Ni = N. Thus, the mean-electron density p, 
p---N/A, where A is the measure of the system, reduces to 1/Aws, where 
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Aws is the measure of the Wigner-Seitz (WS) unit cell. The mean distance 
between the electrons is a=[dF(d/2)/2rd/Zp] TM, where F(d/2) is the 
gamma function. 

Two electrons separated by a distance r interact through the Coulomb 
potential ~bc(r) defined as the solution of Poisson's equation 

2~ra/2 
V24c(r) + ~ e2~(r)  = 0 (2.1) 

whose solutions are 

q~c(x)= -e2lxl  for d =  1 

~bc(r) = - e  2 ln(r/L,) for d =  2 

~bc(r) = e2/r for d =  3 

(2.2) 

(Ls is an irrelevant scale length). The Fourier transform of ~bc(r), 

~c(k) = f dk exp(ik �9 r) ~bc(r) (2.3) 

takes the simple form 

~c(k) = [ 2~d/Z/ F( d/2 ) ] e2/k 2 (2.4) 

One electron and one ion separated by a distance r interact through the 
po ten t i a l  qJie(r), 

)'~bsR(r) for r < ~ (2.5) 
()ie(r)=[--()c(r) for 6<r 

6 is a length characterizing the "size" of the ions. q~sR(r) is a suitable short- 
range potential, which guarantees the stability of the system for d ~> 2. At 
this level, we do not need to specify the precise form of ~bs~(r). We shall 
only assume that ~bie(r) is continuously differentiable everywhere. This 
assumption is motivated by purely technical reasons, the mean-field 
analysis becoming slightly more difficult to handle if ~sR(r) includes hard 
cores. The long-wavelength properties of the system are not sensitive (from 
a qualitative point of view) to the detailed form of ~bsR(r ). The total 
interaction potential of the finite system is 

N 
V~(rl ..... ru) =-1 ~ ~bc(Iri--rjl)+ ~ VL(ri)+ VoN (2.6) 

2 i~ j  ~=1 ' 
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where ri is the position of the electron i, and VL(r) is the one-body poten- 
tial created by the ions and seen by the electrons, 

VL(r) = ~ ~bie(lr - Rjl) (2.7) 
Rj 

and Vom is a constant, which represents the ion-ion interactions. 
We shall consider the infinite system defined by taking the ther- 

modynamic limit ( T L ) N ~ o v ,  A--+~, p=N/A being kept fixed. We 
assume the quantities of interest to be well-defined in the TL. 3 The 
equilibrium state of the infinite system is determined by the mean electron 
density p and by the inverse temperature fl= 1/kBT. The coupling 
constant F=~e2a 2-a measures the strength of electrostatic interactions. 
The inverse of the Debye wavenumber ~:D = E2~a/2~eZp/F(d/2)]~/2 is the 
characteristic screening length of the electrons. The inverse of the plasma 
frequency ogp= [27ra/2e2p/mF(d/2)]~/2 is the natural time scale for the 
dynamics. 

3. THE VLASOV A P P R O X I M A T I O N  

In this section we derive the basic mean-field equation for the density- 
response function. We follow the well-known procedure where one starts 
from the first equation of the BBGKY hierarchy in the presence of a time- 
dependent external potential. Neglecting the correlations between the 
electrons (Vlasov approximation), we then obtain the required mean- 
field equation. 

Let f~)(r, v; t) and f~2)(r, v; r', v'; t) be the phase-space one- and 
two-body distribution functions of the electrons subjected to the external 
potential Vext(r, t). The first equation of the BBGKY hierarchy reads 

v ~ r + m F z ( r ) - v + F e x t ( r , t )  t) 

10f 
+-- �9 dr 'dv' f(2)(r ,v;r ' ,v ' ; t)Fc(r '-r)=O (3.1) mN 

3 For d = 2 ,  the existence of transport coefficients like D and a is an open question. For 
systems with short-range forces, the self-diffusion constant computed from the Green-Kubo 
formula should diverge. Indeed, a simple physical argument (1I) suggests that the self-velocity 
autocorrelation function decays like 1/t for long times t (this behavior can also be obtained 
by a hydrodynamic analysis312~) For  Coulomb systems, the previous argument does not 
apply in its original form. However, a sophisticated mode-coupling analysis 1~3~ shows that 
the long-time tails persist in a homogeneous electron gas, in agreement with MD 
simulations. 114) The extension of such an analysis to the present inhomogeneous system is 
not straightforward, and consequently D and e might be finite. For d =  1, the status of D 
and a is still more obscure. 

822/48/3-4-31 
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Fa(r ) is the periodic force deriving from Fg(r) ,  4 

Fc(r) = -~rr  VL(r) (3.2) 

Fext(r, t) is the external force, 

Fex t ( r  , t ) =  --~-rr Vext(r '  t )  (3.3) 

and F c ( r ' - r )  is the Coulomb force acting on an electron at r due to 
another electron located at r', 

Fc(r '  - r) = -~Q--- ~bc(Jr' - r3) (3.4) 
o r  

The last term of the left-hand side of (3.1) arises from the interactions 
between the electrons and depends on the two-body distribution function 
f<2~. If we make the usual factorization ansatz, 

' " [ )  " t )=  f<ll(r, v; t ) f I l l ( r  ', v,  f<2) ( r ,  v; r ,  v ,  (3.5) 

the exact equation (3.1) is replaced by an approximate closed equation for 
f<l) i.e., 

0 ~ 0 
~r+m av 

~ + v "  1-- FL(r).-- 

-}- - -  F e x t ( r  , t ) "  -+ -- FMv(r, t)" f<~ t(r, v; t) = 0 
/77 m 

where FMv(r, t) is the mean-field force 

(3.6) 

FMv(r, t )=  I dr' dv' f<~)(r', v'; t) F c ( r ' -  r) (3.7) 

4 Strictly speaking, VL(r) diverges in the limit of an infinite system. This divergence causes no 
trouble, because it is canceled by the divergence appearing in the potential created by all the 
electrons. This cancellation could be made more explicit in (3.1) by introducing the 
truncated two-body distribution function, 

f~2,r> = f(2)(r ' v; r', v'; t) - f<l~(r, v; t) f ~  ', v', t) 

Then (3.1) takes a form where each term is well defined if one assumes that flz,T) has a suf- 
ficiently strong clustering and f~> satisfies the overall neutrality sum rule at any time. In the 
mean-field equations, VL(r ) is always combined with the potential created by the electronic 
charge distribution - e p ( r )  and the sum of these potentials is finite because of the neutrality 
of each Wigner-Seitz cell [see (3.11)]. 
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The mean-field kinetic equation (3.6) is nothing but the particular form in 
the present case of the usual collisionless Vlasov equation. (15) 

In the absence of external potential, the equilibrium phase-space 
density takes the form 

f~)(r ,  v) = p(r) ~0(v) (3.8) 

where p(r) is the (periodic) equilibrium density of the electrons and ~o(v) is 
the normalized Maxwell-Boltzmann distribution, 

q)( v ) = (flm/2rc ) ~1/2 exp(--flmv2/2) (3.9) 

In the framework of the mean-field approach, f ( l ) t r  v) has to be computed J e q  \ 

as the stationary solution of (3.6) obtained by setting Fext(r, t )=  0. This 
gives the following coupled mean-field equations for p(r) and V(r): 

p(r) = p(O) exp{ - /~ [  V(r) - V(O)] } 

V(r) = gL(r) + ~ dr' ~bc(Ir' - rt) p(r') 
J 

(3.10) 

These equations will be studied in detail in further publications. In this 
paper we do not need the explicit form of their solutions. Note only that 
both p(r) and V(r) have the periodicity of the lattice and depend on the 
temperature; furthermore, p(r) does satisfy the neutrality sum rule 

fw dr p(r)= 1 (3.11) 
S 

Now we assume the external potential to be weak and mono- 
chromatic, 

Vext(r, t) = Vcxt exp(ik �9 r - icot) (3.12) 

and to have been switched on at t = - ~  (co has a small, positive, 
imaginary part) when the system was at equilibrium. This external 
potential induces in f~l~ a change 6 f  (~ with respect to the equilibrium 
distribution Jeq~), i.e., 

f(1)(r, v; t ) =  p(r) q~(v)+ ~f(X)(r, V; t) (3.13) 

Up to the lowest order in Vex" 6 f  (~ can be written as 

6f(l~(r, v; t) = z(r, v; k, co) Vext exp(ik �9 r - icot) (3.14) 

where z(r ,v;k,  co) is a local, wavenumber- and frequency-dependent 
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response function. Replacing (3.13) and (3.14) in the Vlasov equation (3.6), 
and linearizing this equation with respect to Vext, we find 

-- ie) + ik" v + v �9 ~r + ~ F(r) �9 ~-~v z(r, v; k, e)) 

= -flp(r)~o(v)v. I i k - f d r '  dv' z(r',v';k, c o ) F c ( r ' -  r ) exp[ ik .  ( r ' -  r ) ]}  

(3.15) 

which is the required mean-field equation for z(r, v; k, ~o), Here F(r) is the 
force deriving from the mean-field potential V(r) determined from (3.10), 

0 F(r)= - ~  V(r) (3.16) 

In the homogeneous electron gas model, where the ions form a 
uniform background with charge density ep, the solutions of (3.10) are 
p ( r ) = p  and V(r)=0.  Then F(r) vanishes and the solution of (3.15) is 
straightforward(~61; in particular, )~ is independent of r and its dependence 
on v is easily computed. In the present case, p(r) and V(r) are not constant, 
so F(r) does not vanish. Consequently, the dependence on r and v of ;g is 
highly nontrivial and the resolution of (3.15) is much more difficult than in 
the homogeneous case. This difficulty arises from our "exact" treatment of 
the interactions between the electrons and the ions, or, in other words, 
from the nonlinearization of the Vlasov equation with respect to the 
periodic ionic potential VL(r). 

4. THE RESPONSE FUNCTION 

In this section, we derive the mean-field expression of the density 
response function )~(k, e)) averaged over one Wigner-Seitz cell, 

1 
z(k, og)=--~ws lws dr I~ dv z(r, v; k, o9) (4.1) 

This is achieved through a formal solution of the mean-field equation 
(3.15), which can be divided into the following steps. Defining A(r, v; k, co) 
through 

z(r, v; k, co) -=/~p(r) ~0(v) A(r, v; k, o9) (4.2) 

we first rewrite (3.15) as an integrodifferential equation for A. The latter is 
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then transformed into a purely integral equation. This integral equation for 
A leads to a linear inhomogeneous integral equation for 

B(r; k, co) = f dv ~p(v) A(r, v; k, co) (4.3) 

which is solved in terms of an infinite series. The resulting expression for 
z(k, co) is obtained by using 

P z(k, co) = ~ Jw/s dr p(r) B(r; k, co) (4.4) 

[Equation (4.4) is an obvious consequence of the definitions (4.1)-(4.3).] 
The method is given in Section4.1; some comments are given in 
Section 4.2. 

4.1. Formal Calculation of x(k, m) 

Replacing g by (4.2) in (3.15), we obtain 

1 F(r)'~vv A(r, v; k, co) = - v -  K(r; k, o~) - ico  + i k ' v  + v'-~--r+ m 

with 

(4.5) 

K(r; k, co) = ik - f dr '  dr '  z(r', v'; k, co) Fc(r '  - r) exp[ ik .  (r' - r)]  (4.6) 

and where we have used the equilibrium mean-field equations (3.10). 
Since K depends on A (through X), (4.5) is an integrodifferential 

equation. The next step of the method consists in transforming (4.5) into 
an equation that does not involve partial derivatives of A with respect to r 
and v. For this purpose, we introduce the trajectories of one electron in the 
potential V(r). For each point (r, v) in the phase space, let Cg(r, v) be the 
trajectory that goes through this point. The points (s, w) belonging to the 
curve C~(r, v) can be parametrized by a time t, 

s = roe(t; r, v), w = vce(t; r, v) (4.7) 

where rce(t; r, v) and roe(t; r, v) are the position and the velocity of one elec- 
tron at the time t moving in the potential V(r) with the initial conditions 
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rce(0; r, v) = r and vce(0; r, v) = v. Now we consider the restriction of (4.5) to 
the curve Cg(r, v). Using the equations of motion 

0_ r,e(t; r, v) = vce(t; r, v), 0 r ~ vC~(t; r' v) = 1 F(rce(t; r' v)) m (4.8) 

we see that the differential operator 

w-~s + -  (4.9) m F(s) "~w 

merely reduces to O/Ot for (s, w) belonging to (g(r, v). Along this curve, 
Eq. (4.5) then becomes 

I 1 ~ + ik" v,.e(t; r, v) - ie) A(r,.e(t; r, v), vce(t; r, v); k, c~) 

-- -v,.e(t; r, v)" K(rce(t; r, v); k, co) (4.10) 

The point (r, v) being given, (4.10) is an ordinary differential equation with 
respect to t. This equation is easily solved by standard methods, as shown 
in Appendix A. We obtain 

A(s, w; k, co) 

= {1 + f dr' dr '  )~(r', v'; k, co) ~bc(Ir ' -r t)  exp[ ik .  ( r ' - r ) ]  

+ A(r, v; k, to)} exp[ icot -  ik .  (s - r ) ]  

- 1 - f dr' dr '  )~(r', v'; k, ~o) ~bc(lr' - s[) exp[ ik-  (r' - s)] 

-ico d f  e x p [ i c o ( t - t ' ) - i k . ( s - s ' ) ]  

+ f dr' dr' z(r', v'; k, co) ~bc([r '-s ' l)  

x exp [ ico( t -  t') - ik .  ( s -  r ' ) ]}  (4.11) 

where (s, w) is given by the parametrization (4.7) as well as (s', w') with t' 
in place of t. 

Equation (4.11) is the integrated form of Eq. (4.5) along the curve 
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~(r, v). It gives a relation between A(r, v; k, co) and A(s, w; k, co), which 
can be rewritten as 

A(r, v; k, co) 

={1  + f dr '  dv' z(r', v'; k, co) r  sl) exp[ ik .  ( r ' -  s)] 

+ A(s, w; k, co)} exp[ik �9 (s - r) - icot] 

- 1 - f  dr '  dr '  z(r', v'; k, co) ~bc([r ' - r l )  exp[ik �9 ( r ' - r ) ]  

+ ico fo dt' {exp[-ik. ( s ' - r ) - i c o t ' ]  

+ f dr'  dr '  z(r', v'; k, co) ~bc(Jr' - s'l) 

x exp[ik �9 ( r ' - r )  - icot']} (4.12) 

The point (r, v) being given, Eq. (4.12) is valid for any point (s, w) belong- 
ing to W(r, v), i.e., for any time t. Thus, we can take the limit t ~  - ~  on 
the right-hand side of (4.12). Since the potential V(s) is a continuous 
periodic function (with the periodicity of the lattice), V(s) is bounded and 
the conservation of the energy implies that Iw] is bounded along ~g(r, v). 
Therefore, A(s, w; k, co), which is a continuous function of (s, w) and 
periodic in s, is bounded along Cg(r, v). The integral 

f dr' dv' z(r', v';k, c o ) ( ~c ( l r ' - s l ) e xp[ i k ' ( r ' - s ) ]  (4.13) 

is a continuous periodic function of s, and consequently is bounded along 
Cg(r, v). Since co has a finite, positive, imaginary part, the first term of the 
right-hand side of (4.12) then vanishes when t ~ - ~ .  In this limit, the 
time integral ~o ~ dt ' . . ,  is convergent and (4.12) reduces to 

A(r, v; k, co) 

= - 1 - f dr' dv' z(r', v'; k, co) ~bc(Ir' - r[) exp[ik �9 (r' - r ) ]  
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+ f dr '  dv' ~(r', v'; k, co) ~ c ( I r ' - s ' l )  

• exp[ ik  �9 ( r ' - r )  - icot']} (4.14) 

Taking into account the definition (4.2) of A, we see that (4.14) is a 
linear integral equation in the phase space for A. It is possible, and useful, 
to transform (4.14) into an integral equation in one Wigner-Seitz cell for 
B(r; k, co). Multiplying (4.14) by q~(v) and integrating upon v, we obtain 

f ;o B(r; k, co) = - 1 - ico dv q~(v) dt'exp[ik.(s'-r)-icot'] 
--o~3 

- /~  f dr '  p(r ') B(r'; k, co) {~bc(Jr' - rl) exp[ ik"  ( r ' -  r)] 

; fo +ico dvg(v ) dt' exp(- icot ' )~bc( t r ' -s 'L)  
- o o  

x exp[ ik  �9 (r' - r ) ]}  (4.15) 

Furthermore, the integral upon r' can be restricted to WS by exploiting the 
periodicity of p(r ')  and of B(r'; k, co). We have 

/~ f dr'  p(r') B(r'; k, co) ~bc(Ir ' -r[)  exp[ ik  �9 ( r ' - r ) ]  

=/3 f dr '  p(r ') B(r'; k, o9) ~ ~bc([Rj+ r ' - r l )  
~ W  s Rj 

• exp[ ik .  (Rj + r ' - r ) ]  (4.16) 

The sum ~Rj ' ' "  is a periodic function of the argument ( r ' - r )  with the 
periodicity of the lattice. This function can be rewritten as the sum of its 
Fourier components upon the vectors Gj of the reciprocal lattice, with the 
result 

~bc(hRj + r' - rl) exp[ ik-  Rj + ik .  (r' - r)] 
Rj 

= 1 ~ c ( i k _ G y i ) e x p [ i G j .  ( r ' - - r ) ]  
Aws Gj 
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1 ~Ak) + 1 
= A w s  ~ ~ ~c(Ik- Gjl) exp[iG;" ( r ' -  r)] 

G;r 

1 
= Aws ~c(k) + r  - r; k) (4.17) 

[the last line of (4.17) is just the definition of ~ s ( r ' - r ; k ) ] .  Replacing 
ZRj ' ' "  by (4.17) in (4.16), we find 

f dr '  p(r ')  B(r'; k, co) ~bc(]r' - r[) exp[ ik  �9 (r' - r)] 

=~;c(k)x(k'co)+fl fws dr' p(r')B(r';k, co)~ks(r'-r;k) (4.18) 

Using (4.18), we finally rewrite (4.15) as 

B(r; k, 09) : - [1 + ~r z(k, co)] [1 + icoJ-(r; k, o9)3 

- fl f dr '  B(r'; k, co) p( r ' ) [~s( r '  - r; k) + iw~Oo(r', r; k, co)] 
JW S 

(4.19) 
with 

3/--(r;k, col=f dvq~(V) fo~dtexp{icot+ik.[rce(-t;r,v)-r]} (4.20) 

and 

f fo~ ~D(r ' , r ;k ,  co)= dv (p(v) dtexp{icot+ik'[rce(-t;r,v)-r]} 

x ~9s(r ' -  rce( - t ;  r, v); k) (4.21) 

Equation (4.19) is an inhomogeneous linear integral equation in WS 
for B(r; k, co). Its solution can be formally written in the form 

B(r; k, co) = - [ 1  + ~c(k) z(k, co)] Z(r; k, co) (4.22) 

where Z(r;k, o9) is the infinite series 

Z:(r;k, co)= ~ ( -1)"f l"f(  dr,...dr. 
n = 0 w s ) n  

n - 1  

x I-I p(rj+ ,)[~ks(rs+ ~ - rj; k) + ico$o(rj+ ~, r;; k, co)] 
j = O  

• [1 + icoJ-(r,; k, co)] (4.23) 
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In Zff=o""  the term n = 0  reduces to [1 + ico:-(r; k, co)] and r o is equal to 
r. Replacing B(r;k, co) by (4.22) in (4.4), we obtain a self-consistent 
equation for x(k, co) whose solution can be cast in the generic form 

kZT(k, co) 
x(k, co) = -tip k2 + ~ T(k, co) (4.24) 

with 

T(k, co) = fws dr p(r) _r(r; k, co) 

= ~ (-1)n/~"f( drdrl. . .dr, ,p(r) 
rz = 0  w s ) n  + 1 

n - - I  

x I~ p(r:+ l)[~ts(rj+ 1 - rs; k) + ico~lo(rj+ 1, rj; k, co)] 
j = 0  

x [1 + icoJ(rn; k, co)] (4.25) 

4.2. Comments  

The mean-field expression (4.24) is formal in the sense that T(k, co) is 
defined by the infinite series (4.25), whose convergence is not guaranteed at 
any temperature. Furthermore, the functions J -  and OD are entirely deter- 
mined by the trajectories in the mean-field equilibrium potential V(r). For 
d >  1, these trajectories are rather complicated to study in detail, and it is 
hopeless to obtain closed analytic expressions for g and ~,~, and conse- 
quently for T(k, co) and )~(k, co). Although (4.24) is not completely explicit, 
this expression is particularly useful for establishing general properties of 
the static and dynamic structure factors (see Sections 5 and 6) and for 
studying particular cases or limits, such as the one-dimensional case or the 
high-temperature regime (see papers II and III). 

The structure of the series (4.25), as well as its different ingredients, 
can be interpreted as follows. First, taking into account the definition 
(4.20) of Y,  we note that the quantity 

--/~p(r)[1 + icoJ(r; k, co)] (4.26) 

is the local response function of independent electrons moving in the poten- 
tial V(r). In each term of (4.25) this local response function is coupled to 
the local electron density through the static and dynamic propagators Os 
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and ~PD, respectively. The series (4.25) represents a perturbative expansion 
to all orders with respect to this coupling mechanism. 5 

At finite temperatures, each term of (4.25) gives a contribution to 
T(k, c0) whose magnitude depends on the inverse temperature ft. In the 
high-temperature limit ( f l ~ 0 ) ,  only the first term ( n = 0 )  contributes. 
Furthermore, the temperature-dependent potential V(r) goes to VL(r) in 
this limit. 6 The high-temperature form of (4.24) then becomes 

Z 2(k, co) 
x(k, co)= (4.27) 

1 -  c(k) Z 2(k, co) 

)(v~ co) is the response function of independent electrons in the potential 
VL(r), 

- 1  
Z~](k, c o ) = ~ w s  fsJw dr tip(r)[1 + iOgYL(r; k, co)] (4.28) 

where ~c  obviously is the dispersion function Y- corresponding to VL. At 
finite temperatures, it is no longer possible to rewrite z(k, co) as (4.27) with 
V in place of VL: the coupling mechanism described previously makes 
T(k, co) different from -Z(v~ co)/pp. 

Finally, note that the high-temperature form (4.27) appears as a 
natural extension of the man-field expression 

co) 
Zo(k, co)= (4.29) 

1 - ~c(k) Zg)(k, co) 

corresponding to the uniform background case, (17) i.e., to p ( r ) = p  and 
V(r) = 0. In (4.29),)(o~ co) is the response function of free electrons. Of 
course, (4.29) can be recovered from our general solution, as shown in 
Appendix B. 

5 The coupling mechanism between the local response function (4.26) and the local electron 
density is a particular aspect of the competition between the periodicities imposed by k and 
the lattice, respectively. This could be made more explicit in (4.25) by replacing the periodic 
functions p, Y-, ~s, and ffD by their Fourier decomposition upon the wave vectors Gj of the 
reciprocal lattice. 

6 Here and in the forthcoming papers, VL(r ) is the total potential created by the ionic lattice 
and the uniform charge distribution -ep. For the sake of simplicity, we keep the same 
notation for this total potential as for the ionic potential defined by (2.7) (the latter being in 
fact divergent, as mentioned in a previous footnote). 
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5. THE STATIC STRUCTURE FACTOR 

In this section, we derive the formal mean-field expression of the static 
structure factor 

S ( k ) = l i m l  ( ~ N exp(ik.rj)  ~ e x p ( - i k ' r j )  (5.1) 
TL ~ /  j 1 j = 1 / A,N 

In the definition (5.1), <.-. >A.N means an equilibrium average for the finite 
system, and the subscript TL is used for the thermodynamic limit defined 
in Section 3. The small-k (long-wavelength) behavior of S(k) is also 
investigated in order to determine the nature (plasma or dielectric) of the 
phase described by the mean-field theory. 

5.1.  Formal  C a l c u l a t i o n  o f  S(k) 

Let g(k) be the static response function, 

z(k) = z(k, co = 0) 

We immediately obtain from (4.24) 

k2T(k) 
x(k) = - t ip  k2 + x2oT(k ) 

with 

T(k) = T(k, a) -- 0) -- ~ (--1)nflnl( drdr l . . . d r ,  p(r) 
n = 0  WS) '+l  

r t - 1  

x 1-[ P(rJ+l)0s(r i+l--rJ  ;k) 
j = 0  

The static version of the fluctuation-dissipation theorem (18) reads 

(5.2) 

(5.3) 

(5.4) 

The expression (5.6), with T(k) given by (5.4), is the mean-field form 
of S(k). In the high-temperature regime, T(k) reduces to 1 [the first term 

Replacing x(k) by (5.3) in (5.5), we find 

S(k) = k2T(k)/[k 2 + x~ T(k)] (5.6) 

1 
S(k) -- - ~ z(k) (5.5) 

PP 
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of the series (5.4)], and (5.6) becomes identical to the usual Debye-Hiickel 
expression 

k2/(k 2 + ~C2D) (5.7) 

corresponding to the uniform background case. At finite temperatures all 
the terms of the series (5.4) contribute to T(k), which then is different 
from 1. One can interpret T(k) as a static form factor of the lattice, which 
takes into account all the nonlinear coupling effects between the local 
electron density at different points through the static propagator 0s- 

5.2.  T h e  S t a t i c  D i e l e c t r i c  C o n s t a n t  

The k-dependent dielectric constant e(k) can be deduced from the 
knowledge of S(k) through the standard relation 

1 S ( k )  ( 5 . S  = 1 - 

In the long-wavelength limit ( k ~ 0 ) ,  e(k) goes to the static dielectric 
constant e = g(0). If e is infinite, the system is in a plasma phase (perfect 
screening), whereas if g is finite, the system is in a dielectric phase (partial 
screening). The plasma-phase criterion is equivalent to the small-k 
behavior, 

S(k)~k2/K~ when k ~ 0  (5.9) 

which is known as the Stillinger-Lovett sum rule. (19) In the dielectric phase 
this sum rule is violated. 

The mean-field expression (5.6) clearly satisfies the Stillinger-Lovett 
sum rule (5.9) if T(0) is different from zero. We are going to show that T(0) 
is always strictly positive, at any temperature and in any dimension. Thus, 
in the framework of the mean-field approach, the system is always in a 
plasma phase and there is no phase transition. This result is not a priari 
obvious, since T(0) is a complicated object defined by the series 

T(O)= ~ (--1)~fl'f, drdr,...dr~p(r) 
n = 0  WS) n+l 

n - 1  

x l-I P(rj+l) ~bs(rj+l--rj) (5.10) 
j = 0  

with 

O s ( r ' - r ) = 0 s ( r ' - r ; k = 0 ) = - s  ~-  ~ ~ c ( G f l e x p [ i G j ' ( r ' - r ) ]  (5.11) 
~*WS G j ~ 0  



856 Alastuey 

The remaining part of the section is devoted to the proof of the statement 

T(0) > 0 (5.12) 

For proving the inequality (5.12) it is convenient to introduce the 
function ~(r) solution of the integral equation 

~(r) = 1 -- fl fws dr'  ~(r') p(r') p(r') Os(r' - r) (5.13) 

Since ~(r) can be formally rewritten as 

~ ( r ) = l +  ( -1 ) ' f l  n drl...dr, ~[ p(rj+l)Os(rj+l-rj) 
n = 1 ~ ( w s ) n  j ~  0 

(5.14) 

T(0) is nothing but 

T(0) = f w  dr p(r) ~(r) (5.!5) 
S 

First, we show that there exists a subdomain 9+  of WS where ~(r) takes 
strictly positive values. For this purpose let us compute 

fws dr ~(r) (5.16) 

Using (5.13), we obtain 

1 
;ws r  fws r ' 

Since ~s is a periodic function with the periodicity of the lattice, the 
integral 

fws dr 0s(r '  - r) (5.18) 

is independent of r'. Furthermore, according to the definition (5.11) of ~gs, 
this integral is zero. The second term on the right-hand side of (5.17) then 
vanishes, and the integral (5.16) reduces to lip, which is a strictly positive 
number. This implies that ~(r) takes strictly positive values in a nonempty 
subdomain @+ of WS. For the final part of the proof, we transform the 
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integral equation (5.13) into a differential equation. Taking the Laplacian 
with respect to r of each side of (5.13), we find 

V2r = Z~ p(r) r - ~czo T(0) (5.19) 
P 

For deriving (5.19) we have used the expression (5.15) of T(0) in terms of 
~(r), as well as the identity 

vg~bs(r) = F(d/2) P - ~ ~(r - R/) (5.20) 
Rj 

which is a direct consequence of the definition (5.11) of Os. Since ~(r) is a 
continuous function, there exists at least one point rma • belonging to 9+  
where ~(r) is maximum. At this point, one necessarily has 

V2~(rmax) ~<~ 0 (5.21) 

After having rewritten (5.19) for r = r .... as 

1 
T(0) = P(rma~) ~(rm,• - . -5  vZ~(rmax) (5.22) 

P KD 

we finally obtain the inequality (5.12) by using (5.21) and the fact that 
~(rmax) and p(rma~) are strictly positive [p(r) is strictly positive everywhere 
because V(r) is bounded like any continuous periodic function]. 

6. T H E  D Y N A M I C  S T R U C T U R E  F A C T O R  

In this section, we derive the formal mean-field expression of the 
dynamic structure factor 

1 f ~  dt e i~ S ( k ,  ~o) = ~ _ 

exp[ ik . r j ( t ) ]  ~ e x p [ - i k ' r j ( 0 ) ]  (6.1) 
TL N j 1 j=  1 A,N 

In (6.1), rj(t) is the position of the electron j at time t moving in the N- 
body potential VN, with the initial conditions r j ( 0 )= r  s and vj(0)= vj; the 
equilibrium average ( . .  "~A,N is taken over the initial positions r s and the 
initial velocities vj of the electrons. We also give the mean-field expression 
of the function 

S(k, ~o) 
s(~o) = lira - -  (6.2) 

k~o S(k) 
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which characterizes the spectrum of the fluctuations in the long-wavelength 
limit. The nature (conducting or insulating) of the phase described by the 
mean-field theory then is determined by computing the dc conductivity a, 
which can be expressed as (2~ 

1 
a = 41r2s(0----- ~ (6.3) 

6.1. Formal Calculat ion of S(k, w) and of s(m) 

The fluctuation-dissipation theorem reads (18'17) 

1 
S(k, co) = - ~ z"(k, co) 

~p/~co (6.4) 

where Z"(k, co) is the imaginary part of z(k, co). Let T'(k, co) and T"(k, co) 
be the real and imaginary parts, respectively, of T(k, co). Using the 
expression (4.24) of )~ in (6.4), we obtain 

k4T"(k, co) 
S(k, co) = 7zco{ [-k 2 + ~c 2 T'(k, co)j2 + K4 [ T,,(k, co)]=} (6.5) 

For computing s(co), we have to investigate the small-k behavior of 
T(k, co). This is done in Appendix C, with the result 

T ( k ,  co) = (k2/lg2)[Wl((D) § W 2 ( ( . o )  ] § o ( k  2) (6.6) 

when k ~ 0. Here W~(co) and W2(co) are defined by 

W ~ ( c o )  = - -  

ico 2[" fo g WI(CO) = - - -  ~:n j. dr dv p(r) ~p(v) dt exp(icot)[rce(t; r, v) - r]  2 
2d ws| 

(6.7) 
ico 
-~K 2 ~ ( - 1 ) ' f l " f  drdr~. . .dr~p(r)p(r~)  

n = 1 ~ t 

x a(r, rl; co)" 7(r.; co) 

n--1 

• [ I  p(rj+ l ) [~s( r j+l  - r~) + ico~bv(rj+ 1, rj; co)] (6.8) 
j = l  

with 

ct(r, r'; co) = ico dv qg(v) dt exp(icot) [roe(t; r, v) - r]  
d 

• ~s(r '  - rce(t; r, v)) (6.9) 
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and 

S 7(r; co) = dv q~(v) dtexp(icot) [-rc~(t; r, v ) -  r] 
d 

(6.10) 

0 s ( r ' - r )  and 0o(r', r; co) are equal to O s ( r ' - r ; k = 0 )  and 
! . ~kD(r, r, k = 0, co), respectively. From (6.6) we infer 

T'(k, co) = (k2/~) R(co) + o(k 2) 

T"(k, co) = (k2/~cg ) ~(co) + o(k ~) 

(6.11) 

(6.12) 

when k --* 0, with 

R(co) = Re{ W1(co) + W2(co)} 

~'(co) = Ira{ W,(co) + W2(co)} 

(6.13) 

(6.14) 

Replacing T' and T" by their respective small-k expansions (6.11) and 
(6.12) in the mean-field expression (6.5), we obtain 

k 2 /(co) 
S(k, co) K~zrco{[1 +R(co)]2+I2(co)} (6.15) 

when k ~ 0 .  Using (6.15) and the fact that S(k) always satisfies the 
Stillinger-Lovett sum rule (5.9) in the framework of the mean-field theory, 
we then find 

/(co)�84 
s(co) ~co{ ['1 + R(CO)]2 + I2(co)} (6.16) 

6.2.  T h e  D C  C o n d u c t i v i t y  

The calculation of the dc conductivity through (6.3) requires the 
knowledge of the low-frequency behavior of s(co). We are not able to study 
this behavior in a completely rigorous way, except for d = 1. This is due to 
the complexity of the classical trajectories roe(t; r, v) for d >  1. However, in 
the next paragraph we give some intuitive and reasonable arguments that 
strongly suggest that s(co) vanishes when co goes to zero. According to the 
relation (6.3), this leads to an infinite dc conductivity: in the mean-field 
description, the system is always in a conducting phase. 

The functions Wl(co ) and W2(co), which determine s(co), depend on 
the time Laplace transforms of the quantities 

8 2 2 / 4 8 / 3 - 4 - 3 2  
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fw dr dv p(r) qg(v)[rce(t; r, v) - r] 2 (6.17) 
S |  d 

f~d dv (p(v)[rce(t; r, v) - r] (6.18) 

and 

I e d v  ~0(v)[ree(t; r, v ) - r ]  S s ( r ' -  roe(t; r, v)) (6.19) 

The small-co behavior of these Laplace transforms is related to the long- 
time behavior of (6.17)-(6.19). The latter can be studied by distinguishing 
three types of contributions, which arise, respectively, from the confined 
trajectories with a sufficiently small energy and from the unconfined ones 
with high and intermediate energies. The confined trajectories remain in the 
Wigner-Seitz cell (WS) and consequently (r~.e(t; r, v) - r) remains bounded 
when t-~ ~ .  Therefore the corresponding contributions to (6.17)-(6.19) 
are bounded for 0 ~< t ~< ~ .  For a sufficiently high energy, the unconfined 
trajectories go through an infinite number of cells. It is reasonable to 
assume that most of these trajectories deviate from the straight line going 
through r and colinear to v by a quantity that remains bounded when 
t ~ oo. The intuitive argument that sustains this assumption is the follow- 
ing one. When the energy is large enough, the deviation from the straight- 
line trajectory due to the crossing of one cell is small since the force 
- 8  V/Or is bounded. After a given time, many cells have been crossed and 
most of the previous deviations cancel out because the force is periodic and 
has a zero average upon WS. Therefore the contribution to (6.17) of the 
high-energy trajectories behaves as const x t 2 when t ~ 0% whereas the 
corresponding contributions to (6.18) and (6.19) are bounded, respectively, 
by a constant and by const x t in this limit. For the unconfined trajectories 
with intermediate energies the contribution to (6.17) is clearly bounded by 
const x t 2, and we assume that the contributions to (6.18) and (6.19) satisfy 
similar bounds to those obtained above for the high-energy trajectories. 
Summing the three types of contribution, we find 

fw drdvp(r) ~p(v)[rce(t;r,v)-r]2~constxt 2 
S ~ )  p d 

when 

O<~t~< oo 

t - - + O O  

(6.20) 

(6.21) 
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and 

dv ~O(V)[rce(t; r, v ) - - r ]  ~ks(r'--roe(t; r, v))[ < const • t, 0~<t~<~ 

(6.22) 

From the asymptotic behavior (6.20) and the definition (6.7), we infer 

Re { WI (09) } ~ const/co 2 (6.23) 

Im{ W1(o9) } = o(1/6o 2) (6.24) 

when co~0 .  Furthermore, the bounds (6.21), (6.22) imply that 
c~[a(r, r'; c~)] and ~oly(r; ~o)[ remain bounded when 09 ~ 0. Assuming the 
convergence of the series Z~= 1 "'" in (6.8), this leads to 

Re{ W2(~o) } = o(1/~o 2) (6.25) 

Ira{ W2(o9) } --- o(1/~o 2) (6.26) 

when ~o~0.  Using the expressions (6.13) and (6.14) of R(og) and I(~o), 
respectively, we find 

R(co) ,v const/~o 2 (6.27) 

1(o9) = o(1/~ 2) (6.28) 

when cn--*O. Inserting these asymptotic behaviors in the mean-field 
expression (6.16), we finally obtain 

lim s(~o) = 0 (6.29) 
c o c O  

which is the announced result. Let us point out that the previous 
semiheuristic derivation can be made completely rigorous in one dimension 
at all temperatures (see paper II) and in two dimensions at high tem- 
peratures (see paper III). 

7. C O N C L U S I O N  A N D  C O M M E N T S  

We have derived the formal mean-field expressions of S(k) and of 
S(k, ~o) in terms of the trajectories of one electron in the mean-field 
equilibrium potential V(r). The static and dynamic criteria, which charac- 
terize the nature (conducting or insulating) of the system, have been 
applied to these mean-field expressions. The mean-field theory predicts that 
the system is a conductor at all temperatures, independent of space dimen- 
sion. In three dimensions, the system is indeed expected to be a conductor 

822/48/3-4-32* 
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at all temperatures. In two dimensions, the mean-field prediction is incom- 
patible with the existence of the KT transition. The mean-field theory is, as 
usual, worse in one dimension, since the dielectric phase is stable at all 
temperatures in that case.(21) 

It is not completely surprising that the mean-field theory does not 
predict any aspect (static or dynamic) of the KT transition in two dimen- 
sions. Indeed, the mean-field approximation is only asymptotically valid in 
the high-temperature limit, where the system is in its plasma (or conduc- 
ting) phase; at low temperatures, where the system is in its dielectric (or 
insulating) phase, this approximation becomes uncontrollable. Further- 
more, the failure of the mean-field theory regarding the dynamic aspect of 
the KT transition could be a priori expected. Since the electron-electron 
collisions are neglected, the Vlasov equation (3.6) does not contain any 
dissipative term in the zero-frequency limit. This necessary leads to the 
divergence of the mean-field dc conductivity at all temperatures (and for 
any dimension). The previous argument is corroborated by the explicit 
analysis of the mean-field solution done in Section 6.2. For the static aspect 
of the KT transition, no a priori argument predicts the failure of the mean- 
field theory. In fact, the latter is a bit subtle, 7 as illustrated by the proof in 
Section 5.2. 

The absence of phase transition in the mean-field approach means that 
correlations (or electron-electron collisions) must play a crucial role in 
explaining the KT transition. The original argument of Kosterlitz and 
Thouless (2) appears then to be incomplete, especially for the present fixed- 
ion model, since it entirely ignores correlations. A more satisfactory 
argument 8 should include the cooperative effect between the ionic poten- 
tial, which tends to localize each electron in one given cell, and the 
electron-electron repulsion, which tends to prevent two electrons from 
staying in the same cell (the mean-field theory only takes into account the 
first mechanism). The quantitative formulation of such an argument is an 
open and difficult problem, even for the statics. We believe this formulation 
to be essential to the derivation of an approximate theory describing 
simultaneously the plasma-conducting and dielectric-insulating phases. 

7 Usually, mean-field theories are able to reproduce the static aspects of phase transitions, for 
instance, the paramagnetic-ferromagnetic transition of a system of spins. 

8 The deficiencies of the Kosterlitz-Thouless argument have been also noticed by Forrester, ~221 
who considers a one-dimensional system of charged rods in a periodic background with 
logarithmic interactions. This model has a KT-type transition. On the basis of exact results 
obtained for special values of the temperature, Forrester propounds a heuristic argument 
including correlation effects which predicts the phase diagram of the model. Unfortunately, 
this argument is specific to the logarithmic potential in one dimension: it does not work in 
two dimensions. 
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A P P E N D I X  A 

In this Appendix, we solve the linear, inhomogeneous,  first-order 
differential equation (4.10) by the method of variation of parameters. First, 
the homogeneous equation reads 

{O/~t+ik.vce( t ;r ,v)- ioJ}A(rce( t ;r ,v) ,vce( t ;r ,v);k ,~o)=O (A1) 

whose general solution is 

A(rce( t ;r ,v) ,vce( t ;r ,v);k ,o~)=Cexp[i~ot- ik 'rce( t ;r ,v)]  (A2) 

In order to solve (4.10), we write A in the form (A2) with the constant  C 
replaced by a t ime-dependent function C(t; r, v; k, r This gives 

(O/~t) C(t; r, v; k, r = - v~e(t; r, v).  K(rce(t; r, v); k, co) 

• exp[ ik  �9 ree(t; r, v) - ir (A3) 

which is integrated as 

C(t; r, v; k, ~o) 

Jo = C(0; r, v; k, ~o) - dt' vce(t'; r, v)- K(rc~(t'; r, v); k, ~o) 

• exp[ ik  �9 rce(t'; r, v) - i~t'] (A4) 

Noting that  

v,~(t'; r, v)- K(rc~(t'; r, v); k, ~o) exp[ ik  �9 r,~(t'; r, v)] 

= (O/Qt'){exp[ik �9 r~(t ' ;  r, v)] 

+ f dr '  dr '  x(r', v'; k, ~o) ~bc(]r '-  rc~(t'; r, v)[) exp( ik ,  r')} (A5) 

and integrating by parts the second term of the rhs of (A4), we rewrite 
C(t; r, v; k, ~o) as 

C(t; r, v; k, co) 

= C(0; r, v; k, r + exp(ik �9 r) 

+ dr '  dv' z(r', v ,  k, ~o) ~bc(Ir '-  rl) 

x exp(ik �9 r ') - exp[ ik  �9 r~e(t; r, v) - i~ot] 
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- J dr'  dv' z(r', v'; k, ~)  ~bc(lr' - rce(t; r, v)l) 

• exp(ik �9 r' - icot) 

:o{ - io~ dt' exp[ ik ,  r~e(t'; r, v ) -  loot'] 

f ! t. ~ t + d r ' d v ' g ( r , v , k ,  co) (~c( Ir - rce( t ; r ,v ) l  ) 

x exp(ik �9 r' - icot')} (A6) 

The solution of (4.10) is obtained by multiplying C( t ; r ,v ;k ,  c0) by 
exp[kot - ik .  r,.~(t; r, v)]. Taking into account the initial condition at t = 0, 
C(0; r, v; k, co) must be chosen equal to A(r, v; k, co) exp(ik, r). This finally 
leads to the expression (4.11) given in the text. 

A P P E N D I X  B 

In this Appendix, we check that the well-known expression (4.29) for a 
homogeneous electron gas can be recovered from our general solution 
(4.24). 

The electron gas in a uniform background can be viewed as a 
particular case of the fixed-ion model, where the ions are smeared 
charges filling up the Wigner-Seitz cells with a charge density ep. The 
corresponding local electron density p(r) then is constant (and equal to p), 
as well as the mean-field equilibrium potential V(r). Therefore, the trajec- 
tories that determine the dispersion function Y and the dynamic 
propagator 00 are the free trajectories 

r~(t; r, v) = r + vt (B1) 

Inserting (B1)into (4.20) and (4.21), we obtain 

:-(r; k, ~o)= Jo(k, ~o)= _1. ~ dv q~(v) - -  
l k . v - c o  

(B2) 

and 

~bD(r'; r; k, ~)  = ~o,o(r' - r; k, co) = dv q~(v) dt exp(icot - ik" vt) 

x ~s(r '  - r + vt; k) (B3) 
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According to (B2), the first term (n = 0) of the series (4.25) reduces to 

I + ico3-o(k, co) = f dv q~(v) - -  
k. v Z(o~ co) 

k "v-co tip 
(B4) 

In each term n > 0, one first computes the integral upon r, which becomes 

P fws dr E~hs(rl - r; k) + i03Oo.o(r I - r; k, 03)3 (Rs) 

Since both Os and OD.0 are periodic functions, the integral (B5) does not 
depend on rl. Furthermore, one has 

f w d s  Os(S; k) = 0 (B6) 
S 

which is an obvious consequence of the definition of ~s  [see the last line of 
Eq. (4.17)]. Using (B6), (B3), and the periodicity of Os, we also find 

fws ds ~bD.o(S; k, 03) 

= f dv ~p(v) fo  dtexp(i03t-ik 'vt)  fwsdS*s(S+vt;k)  

= f dv (p(v) fo  dtexp(i03t-ik.vt);ws ds ~bs(S; k) 

= 0  (B7) 

From (B6) and (B7) we infer that the integral (B5) vanishes. All the terms 
n > 0 of the series (4.25) then do so, and 7o(k, 03) is just equal to the term 
n = 0, i.e., 

To(k, 03)= -Z(o~ 03)~tip (Bs) 

Replacing To(k, 03) by (BS) in (4.24), we finally obtain the expression 
(4.29) of Zo(k, 03), as it should. 

A P P E N D I X  C 

In this Appendix, we study the small-k behavior of T(k, co). First, we 
prove the following lemma. 
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Lemma L1. If ~ ( r , v )  is a periodic function of r with the 
periodicity of the lattice, then the average 

fw dr dv p(r) q~(v) ~(rce(t; v), roe(t; V)) (C1) r,  r ,  
s |  ~d 

does not depend on the time t and reduces to the equilibrium average 

fws| dr dv p(r) ~0(v) ~( r ,  v) (C2) 
~d 

Proof. Let U, be the evolution operator associated to the one-body 
Hamiltonian H(p, r) = pZ/2m + V(r). From Eqs. (3.9) and (3.10) we see that 
p(r) ~(v) is nothing but (apart from a normalization constant) the one- 
body Gibbs measure exp[-/~H(p, r)] with p=mv. Therefore p(r)~o(v) 
remains invariant under U,, i.e., 

p(r') ~0(v') = p(r) q~(v) (C3) 

with r' = Ut(r)=rc~(t; r, v) and v '=  Ut(v)--vce(t;r, v). Furthermore, 
according to Liouville's theorem, ~23) the Jacobian of the transformation 
(r, v) ~v,  (r', v') is equal to 1, i.e., 

dr dv = dr' dr' (C4) 

By making the variable change (r,v)--+(r',v') in the average (C1), we 
obtain 

fw dr dv p(r) q~(v) ~(rce(t; v); Vce(t; V)) r~ r, 
s |  ~d 

= f  dr' dv' p(r') q~(v') ~( r ' ,  v') (C5) 
Ut(WS | ~d) 

with the help of the relations (C3) and (C4). Let H,, be the d-dimensional 
submanifold of the phase space in which the velocity is constant and equal 
to v'. The integral on the right-hand side of (C5) can be rewritten as 

f~dv' ~p(v') fm,~ v,,ws| d r 'p ( r ' ) f f ( r ' ,  v') (C6) 

Using the bijective and continuity properties of U,  it is easy to check that 
H,, c~ Ut(WS | ~a) is a compact domain 9 of ~a, from which a complete 

9 The shape of this domain is different from the one of WS and is very complicated (except for 
d =  1, where the latter reduces to an interval with the same length as WS). 
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tessellation of R a can be generated by the translations belonging to the 
group of invariance of the lattice. Each nonempty intersection of this 
domain with a given Wigner-Seitz cell can be mapped to a subdomain of 
WS through a given translation belonging to this group; the previous 
tessellation property implies that all these subdomains do not intersect and 
their reunion is WS. Splitting the domain H v, n U,(WS | R d) into its inter- 
sections with the Wigner-Seitz cells, we then see that the integral of any 
periodic function of r upon this domain is just equal to the same integral 
upon WS. In particular, one has 

, d r ' p ( r ' ) ~ ( r ' , v ' ) = f w s d r p ( r ) ~ ( r , v '  ) (C7) 
f/-/, n Ut(WS @ ~d) 

since p ( r ) ~ ( r ,  v') is periodic as the product of two periodic functions. 
Using (C7) in (C6), and taking into account (C5), we see that the a priori 
time-dependent average (C1) does reduce to the equilibrium average (C2). 
Now, we turn to the small-k expansion of T(k, o~). The first term (n = 0) of 
the series (4.25), 

fws dr p(r)[1 + ico3-(r; k, ~o)] 

fw = 1 + io~ dt exp(ie)t) dr dv p(r) q~(v) 
S@~ d 

x exp{ik" [ rce( - t ;  r , v ) - r ] }  (c8) 

has to be treated separately, since its structure is different from that of the 
other terms (n > 0) of (4.25). The small-k expansion of (C8) is obtained by 
replacing exp{ik �9 [ rce( -  t; r, v ) -  r]  } by its Taylor series in k. The zeroth- 
order term vanishes because of the neutrality sum rule (3.11) and of the 
normalization constraint ~ dv (p(v)= 1. The linear term in k also vanishes 
for symmetry reasons. It results from this that 

fWS 
dr p(r)[1 + icoJ(r;  k, co)] 

--�89 f o  dt exp(icot) 

Xfw d r d v p ( r ) ~ o ( v ) { k . [ r c e ( - t ; r , v ) - r ] }  2 (C9) 
S| d 

when k-*0 .  The right-hand side of (C9) is a quadratic form of the 
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Cartesian components of k, which must be invariant under the rotations 
belonging to the symmetry group of the lattice. Assuming the symmetry of 
the lattice to be high enough, ~~ this quadratic form is then necessarily 
proportional to k 2. This property allows us to rewrite (C9) as 

k 2 
fwdr  p(r)[1 + icoJ(r;  k, co)] ~ ~c-~D W~(o)) 

s 
when k ~ 0  (CI0) 

with Wl(co ) given by the expression (6.7). For writing the latter in terms of 
re,(t;r,v), we have used the symmetry properties r , , ( - t ;  - r ,  v )=  
-roe(t; r, v) and p ( - r )  = p(r). 

Each term n > 0 of the series (4.25) can be rewritten as 

n "fl drn'"drxp(rn)[l+ic~Y(r";k'co] ( - 1 )  fl wsl,, 

x p(r ,_  l) [~bs(rn - rn_ l ; k) + icoOD(r,, rn _ 1 ; k, co)] 

x -.- x p ( r l ) [ O s ( r 2 - r l ; k )  +ico0D(r2, r l ;k,  co)] 

x f dr p( r ) [0s( r  I - r ;  k) + ico~bD(rl ; r; k, co)] 
JW S 

The small-k expansion of the integral 

(C l l )  

fwdr  p(r)l-0s(rl - r; k) + icol)D(rl, r; k, co)] 
s 

(Cl2) 

reads 

dr p(r) 0s(r l  - r) + ico dt exp(icot) 
s 

Xfw drdvp(r) cp(v)tPs(rl-r,.,,(-t;r,v)) 
S| d 

{fw �9 dr dv p(r)  q)(v) + k  sdr p(r) ( r , - r )  + io fo dtexp(icot) fws| ~ 

10 For instance, for d =  2, we shall consider a triangular lattice (see paper III). The rotations 
with angles pn/3 (0 <~ p <~ 5) belong to the symmetry group of the lattice, and the sole 
quadratic forms of k invariant under these rotations are indeed proportional to k 2. If we 
consider a rectangular lattice (which has a low symmetry), the right-hand side of (C9) is no 
longer proportional to k 2. This presence of anisotropic effects in the long-wavelength limit 
leads to anisotropic macroscopic behavior (in particular, the dc conductivity then depends 
on the direction of the applied external electric field). 
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• ~-k ~s(r  1 - r c ~ ( - t ;  r, v)) 

fo - (ok" dt exp(i(ot) dr  dv p(r) r 
S |  d 

X [rce ( -- t; r, v) -- r]  IPs(r I -- ree ( -- t; r, v)) + O ( k  2) (C13) 

with c3tfis/~k(s) = OOs/~3k(s; k = 0). The vector rl being given, Os(rl - r) and 
0 O s / 0 k ( r l -  r) are periodic functions of r. We can then apply Lernrna L1 to 
these periodic fuctions. This gives 

fw drdvp(r)(p(V)~s(rl-r.,(-t;r,v)) 
S |  d 

( .  

= | dr  dv p(r) ~o(v) ~bs(r I - r) 
Jw S |  d 

= fws dr  p(r) ~s(r l  - r) (C14) 

and 

fws| dr dv p(r) q)(v) ~kS (rl - r , . c ( -  t; r, v)) 

= fws| dr dv p(r) q)(v)~-~ (rl - r )  

= fwsdr p(r)~-~-~ (r~ - r )  (c15) 

Taking into account (C14) and (C15), 
(independent of k) of (C13) vanishes, 
k .  {.--}. This leads to 

we see that the constant  term 
as well as the first linear term 

f w d r  p(r)[~bs(r I - r; k) + i(O~D(rl, r, k, (o)] 
S 

fo ~ fw = - (ok" dt exp(i(ot) dr  dv p(r) (p(v) 
S| d 

X [rce ( - -  t; r, v) - r ]  ~ts(r 1 - -  r c e  ( - -  t; r, v)) + O(k 2) (C16) 
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Using the defini t ion (4.20) of Y-, we easily ob ta in  

1 + icoY(rn;  k, ~ )  

fo fo = - cok" dt exp(imt)  d r .  ~O(t~n)[rce ( -- t; r . ,  vn) -- rn~ + O(k  2) 
d 

(C17) 

Fur the rmore ,  one has 

~ s ( r j + ,  - r J ;  k)  + ico~D(rj+ 1, rj ;  k, co) 

= ~ s ( r j + l - - r j ) + i o o t p D ( r j + l , r j ,  c o ) + O ( k )  (C18) 

Using the smal l -k  behav io r  (C16) (C18) in ( C l l ) ,  and  tak ing  into account  
the symmet ry  proper t ies  of the lat t ice and of the trajectories,  we find that  
the con t r ibu t ion  of the terms n > 0 to T(k, co) is O ( k  2) and can be rewri t ten 

as 

( k 2 / ~ )  W2(co) (C19) 

with W2(co) given by the express ion (6.8). The smal l -k  behav ior  (6.6) of 
T(k, e)) is finally ob ta ined  by adding  to (C19) the con t r ibu t ion  (C10) of 
the term n = 0. 
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